
J. Fluid Mech. (2006), vol. 546, pp. 123–152. c© 2005 Cambridge University Press

doi:10.1017/S0022112005007093 Printed in the United Kingdom

123

A noise-controlled free shear flow
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The adjoint of the perturbed and linearized compressible viscous flow equations is
formulated in such a way that its solution can be used to optimize control actuation
in order to reduce flow-generated sound. We apply it to a direct numerical simulation
of a randomly excited two-dimensional mixing layer, with inflow vorticity-thickness
Reynolds number 500 and free-stream Mach numbers 0.9 and 0.2. The control
actuation is implemented as general source terms in the flow equations (body forces,
mass sources, and internal energy sources) with compact support near the inflow
boundary. The noise to be reduced is defined by a space–time integral of the mean-
square pressure fluctuations on a line parallel to the mixing layer in the acoustic field
of the low-speed stream. Both the adjoint and flow equations are solved numerically
and without modelling approximations. The objective is to study the mechanics of
the noise generation and its control. All controls reduce targeted noise with very
little required input power, with the most effective (the internal energy control)
reducing the noise intensity by 11 dB. Numerical tests confirm that the control is not
by any simple acoustic cancellation mechanism but instead results from a genuine
change of the flow as a source of sound. The comparison of otherwise identical flows
with and without control applied shows little change of the flow’s gross features:
the evolution and pairings of the energetic structures, turbulence kinetic energy,
spreading rate, and so on are superficially unchanged. However, decomposition of the
flow into empirical eigenfunctions, as surrogates for Fourier modes in the non-periodic
streamwise direction, shows that the turbulence structures advect downstream more
uniformly. This change appears to be the key to reducing their acoustic efficiency,
a perspective that is clarified by comparing the randomly excited mixing layer to a
harmonically excited mixing layer, which is relatively quiet because it is highly ordered.
Unfortunately, from the perspective of any practical implementation with actuators,
the optimized control identified has a complex spatial and temporal structure, but it
can be simplified. Two empirical eigenmodes were required to represent it sufficiently
to reduce the targeted noise intensity by about 50 %. Optimization of a simple
single-degree-of-freedom control with an ad hoc spatial structure is less effective.

1. Introduction
The generation of sound by a subsonic jet has resisted any simple mechanistic

description. While manipulations of the flow equations can provide a hierarchy of
theoretical noise-source definitions (Goldstein 2003), the details of the process are
masked in the complexity of the flow turbulence. Even then there is the additional
complication that most of the turbulence energy does not directly couple to the sound
field: it is the subtle growth and decay of the energetic turbulence structures and
their interactions that puts energy into radiation-capable noise-source components
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(Ffowcs Williams 1963; Crighton 1975); however they are defined within a particular
model. For example, in the simplest model (Lighthill 1952), where propagation is
by the stationary-medium scalar wave equation, a mode must have a supersonic
phase velocity to radiate. This condition is satisfied by only a small portion of the
fluctuation energy in a subsonic jet. Statistical descriptions of theoretical noise sources
are complex, and models for them currently lack the fidelity for reliable predictive
acoustic modelling of general flows. Even direct numerical simulations (Colonius, Lele
& Moin 1997; Freund 2001), though they have been useful for diagnosing aspects
of free-shear-flow noise generation and its modelling, have neither illuminated any
generally applicable simplifying principles nor pointed to any clear means of noise
reduction.

In this paper we devise an approach to study free-shear-flow noise reduction
directly. Given a numerical solution of the compressible flow equations, we solve
the adjoint of the linearized perturbed equations backward in time to provide the
sensitivity of the noise, as defined quantitatively by an appropriate metric, to changes
in control actuation. This sensitivity is used to iteratively improve controls for the
selected noise-reduction objective. The scheme is formulated mathematically in § 3.

This iterative approach is, however, computationally intense, requiring numerous
numerical solutions of the adjoint and flow equations to optimize the controls. For
this reason we considered a two-dimensional mixing-layer model of the near-nozzle
region of a jet. The details of the mixing layer and its numerical simulation are
provided in the following § 2. This flow has several of the salient features of a jet,
but can be computed at a fraction of the expense of even a low-Reynolds-number
turbulent jet (Freund 2001). It is also easier to interpret certain results for this
simplified flow model, though care must be taken in generalizing the specific results
to three-dimensional turbulent flows because of their additional complexity.

Clearly, such an iterative scheme is not designed for implementation in hardware,
since the iterative process itself requires full knowledge of the unsteady flow field.
Instead, we use it to probe the mechanisms of free-shear-flow noise, particularly the
noise due to the quasi-two-dimensional (instability-wave-like) flow structures in a
turbulent flow, and perhaps most importantly to gauge how much noise reduction
can be accomplished with nozzle controls. (How quiet can it be? What type of
control is required?) This study is undertaken in § 4, which contains the bulk of this
paper’s results. Of particular interest are the changes induced by the control. Once
the mixing-layer noise is significantly reduced, and it is shown that this results from a
genuine change in the flow as a source of sound, we can compare the original noisy
flow and its quietened counterpart to illuminate noise mechanisms in a way that has
not been possible before.

2. The two-dimensional mixing layer
2.1. Flow parameters

The mixing layer simulated is shown schematically in figure 1. The velocity difference
across the layer is �U , with which we can define the inflow vorticity thickness,

δω =
�U

|du/dy|max

, (2.1)

of the initial hyperbolic tangent velocity profile for use as a length scale. This inflow
condition simplifies the flow relative to its experimental counterpart by removing any
interaction with a splitter plate (or nozzle lip), which can change the character of the
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Figure 1. Mixing layer control schematic.

acoustic radiation. The flow Reynolds number is Reu ≡ ρ∞�Uδω/µ = 500 with µ the
constant viscosity of the fluid and ρ∞ the ambient density, which is the same in both
streams. We also assume zero bulk viscosity. The Mach numbers of the free streams
are M1 = U1/a∞ = 0.9 and M2 = U2/a∞ = 0.2, where a∞ is the ambient sound speed.
We assume a perfect gas with constant Prandtl number Pr ≡ cpµ/k = 0.7.

The flow was simulated in a domain extending 100δω in x and out to ±80δω

in y, as shown in figure 1. The line Ω at y = −70δω and extending between
x = 0 and x = 100δω was targeted by our control for noise reduction. This one-
sided noise reduction objective is inspired by jet noise reduction, which is most
important in the downward toward-the-ground direction, though the formulation
admits considerable flexibility in selecting Ω . It is possible to select an Ω in the far
field, but computing far-field sound and propagating the adjoint solution back into
the meshed computational domain would both introduce errors and add considerable
complexity. The computational savings of such an approach would be small because
most mesh points are in the vortical region of the flow. The controls discussed
subsequently were applied only in the small square region labelled C in the figure,
covering x/δω ∈ [1, 7] and y/δω ∈ [−3, 3]. Since C does not span the entire width
of the mixing layer that has significant vorticity (see figure 1), we do not anticipate
laminarization to be an option for our control.

2.2. Governing flow equations

The compressible viscous flow equations were formulated in Cartesian coordinates
and are provided in full in Appendix A. Here, the equations are presented only in
operator form. The compressible flow equations are thus

N(q) = 0, (2.2)

where q is a vector of the primitive flow variables q = [ ρ u v p ]T .
The control is implemented into the equations as a general source term φ(x, t) with

compact support in C (see figure 1):

N(q) = Fφ(x, t), (2.3)

where the vector F puts the control’s action into the different equations that make
up N (see Appendix A) and enforces certain consistencies for the control forcing.
For example, it is designed so that momentum forcing appears consistently in the
momentum equation and in the total energy equation, where it acts on the kinetic
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Source type (f1, f2, f3, f4) (f ′
1, f ′

2, f ′
3, f ′

4) (a∗
2 , a∗

3 ) g

Mass† (1, 0, 0, T0/γ ) (0, 0, 0, 0) (0, 0) ρ∗ + p∗T0/γ
x body force (0, 1, 0, u) (0, 0, 0, u′) (p∗, 0) u∗ + up∗

y body force (0, 0, 1, v) (0, 0, 0, v′) (0, p∗) u∗ + up∗

Int. energy (0, 0, 0, 1) (0, 0, 0, 0) (0, 0) p∗

†with zero velocity and temperature T0 = 1/(γ − 1)

Table 1. Vectors used for different controls: F = [ f1 f2 f3 f4 ]T defined in (2.3);
F′ = [ f ′

1 f ′
2 f ′

3 f ′
4 ]T defined in (3.7); A∗ = [ 0 a∗

2 a∗
3 0 ]T defined in (3.12); and the gradient

g(x, t) defined in (3.5).

energy. Specific F vectors for the flow equations in Appendix A are listed in table 1
for the different types of control considered.

2.3. Numerical methods

The flow equations were solved numerically and without any modelling
approximations. A fourth-order Runge–Kutta algorithm was used to advance the
solution in time. Spatial derivatives were computed with a sixth-order compact finite-
difference scheme (Lele 1992) in the x-direction and a fourth-order seven-point explicit
coefficient-optimized finite-difference scheme (Tam & Webb 1993) in the y-direction.
The explicit scheme in y facilitated domain decomposition for solution on parallel
computer systems.

In our computation, the equations were discretized with 960 × 640 mesh points
in the x-and y-directions, respectively. The mesh was stretched in y to increase the
resolution in the shear layer. It had a minimum spacing �ymin = 0.14δω at y = 0,
a maximum spacing �ymax = 0.96δω at y = ±80δω, and a maximum stretching rate
|(�yi+1 − �yi)/�yi |max = 1.6 % at y ≈ ±55δω. Beyond the physical domain (see § 2.1),
the mesh was stretched continuously and extended 60δω upstream and downstream
of the physical domain in x and 20δω beyond its top and the bottom in y. In these
zones, damping with strength increasing away from the physical domain was added
to the equations in order to mimic a radiation condition (Freund 1997). Specifically,
the damping terms appear in the governing equations simply as

N(q) = −ξ (q − qtarget), (2.4)

where the damping coefficient ξ is zero in the physical domain and varies quadratically
from 0 to 0.2a∞/δω between the physical and the computational domain boundaries.
By the time all fluctuations reached the actual boundaries of the computational
domain, they were reduced to such a negligible level that standard one-dimensional
characteristic boundary conditions adequately absorbed outgoing perturbations.

2.4. Inflow excitation

To make the mixing layer well-defined and reproducible and to avoid any spurious
auto-excitation associated with the numerical discretization, we explicitly excited our
mixing layer. Another objective of this excitation was to provide a relatively high
amplitude disturbance level at the inflow to properly challenge the controller.

Linear instability analysis predicts that the most unstable mode of the corresponding
incompressible mixing layer, with the assumption of parallel flow, has Strouhal
number St0 = f0δω/(4Uc) ≈ 0.032 (Monkewitz & Huerre 1982), where Uc = (U1 +
U2)/2 and f0 is the mode frequency. Thus, frequency f0 provides an estimate of
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the fundamental frequency of our compressible mixing layer, since it is not very
sensitive to the present compressibility level (Sandham & Reynolds 1991). Numerical
experimentation confirmed that our mixing layer does respond most strongly to
excitations with frequencies near f0.

We excited the flow at a total of eight frequencies,

fi =
f0

4

(
i + α(i)

)
, i = 1, 2, . . . , 8, (2.5)

where α(i) are uniformly distributed random numbers such that α(i) ∈ (−0.5, 0.5). In
§ 4.1, we confirm that the noise and its controllability are insensitive to the particular
random numbers defining the excitation. For comparison, we also simulated and
controlled a mixing layer excited with f0, 2f0, and 6 subharmonics of f0. This
excitation, which is similar to that used by Colonius et al. (1997), produces a regular
roll-up and pairing of vorticies (see § 4.6).

A special procedure was designed to reduce the direct effect of the excitation on
the sound field. We defined

ψ = ψ0 e−0.2(x−x0)
2

e−0.2y2

8∑
i=1

sin

[
2πfi(x − x0 − Uct)

Uc

+ β (i)
x

]
sin

[
2πfiy

Uc

+ β (i)
y

]
, (2.6)

where ψ0 = 0.008ρ∞a2
∞/δω and x0 = −10δω. The βx and βy are random phases

∈ [0, 2π) and are constant for the entire simulation. The excitation was then included
as a body force

Fe =

(
∂ψ

∂y
, −∂ψ

∂x

)
, (2.7)

which is solenoidal and thus relatively quiet. Our selected x0 puts the excitation
upstream of the physically realistic portion of the computation. The ξ in (2.4)
has maximum value of only 0.0125a∞/δω in this region, which does counteract the
excitation but does not significantly interfere with its objectives.

This approach can generate disturbances at the physical domain boundary that are
higher amplitude than could be accurately prescribed locally at the inflow boundary
without generating spurious sound. The average turbulence intensity at the centre of
the control region (x = 4δω, y = 0) close to the inflow was already 70 % of its peak
value further downstream. The excitation Fe appears in the momentum equations, but
has support only for x < 0, which is the beginning of what we consider the physical
domain. Therefore, for clarity we omit it from subsequent analysis. Its purpose is solely
to provide an inflow condition. Our controller, of course, has no direct knowledge of
this excitation. Because the base flow is a slowly spreading shear layer, the noise from
the excitation is not expected to be exactly zero, but both visualizations and the
eventual success of the control show that it is negligible relative to the physical noise
from the mixing layer.

2.5. Simulation procedure

To avoid initial transients, we first simulated the flow for time 588δω/�U , which
is approximately 59 fundamental vortex roll-up periods according to our estimated
f0. This process took 10 500 numerical time steps with �t = 0.056δω/�U . Then
the control was applied for 437.5δω/�U time units, which is about 44 fundamental
roll-up periods. Figure 2(a) shows the flow and sound fields, which include data in
two regions: the direct numerical simulation data (inner area) and a far-field acoustic
extrapolation beyond the simulation domain, which was computed as by Freund
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Figure 2. (a) Visualization of the flow and sound field before control. The rectangular boxes
outline the physical and total (including boundary zones) computational domains. (b) Sound

intensity I = (p − p̄o)2/ρ
2
∞a4

∞ on x = 94δω: flow simulation data ( ) (the sudden drop
near x = 100δω corresponds to the absorbing boundary zone) and acoustic extrapolation data
( ).

(2001) using pressure data at y = −30δω. It is seen in figure 2(b) that the target line
Ω at y = −70δω is indeed in the far acoustic field, as defined for this purpose by a
1/r intensity decay. This supports our approach of using the pressure data on Ω to
control the far-field sound.

3. Control formulation
3.1. The control and its objective

The control objective is to make the mixing layer as quiet as possible with local
actuation near the inflow, which will allow us to study noise mechanisms effectively
and establish an empirical lower bound on the mixing-layer noise. Thus, it is desirable
to have the most general control possible, which in our simulation methodology
corresponds to treating each space–time point of the discrete representation of φ(x, t)
in (2.3) as an independent control parameter. In the reported results, the function φ

is discretized over a 36 × 45 point subregion of the simulation mesh in C for 7812
time steps, giving approximately 107 control parameters to be optimized. (The much
smaller number of control dimensions actually necessary for control is investigated in
§ 4.5.)

The control’s specific objective is to reduce noise as defined by the cost functional

J(φ) =

∫ t1

t0

∫
Ω

[p(φ(x, t), x, t) − p̄o(x)]2 dx dt, (3.1)

where t0 and t1 are the start and end times of the control period, p is the local pressure,
which can be viewed as depending upon the control φ(x, t), and p̄o is the spatially
dependent but time-averaged pressure before control is applied. This mean pressure
is nearly uniform on Ω with |p̄o − p∞| < 0.0017p∞, where p∞ is the nominal ambient
pressure, but since this variation is comparable with the uncontrolled acoustic pressure
fluctuations (≈ 0.003p∞), this difference of the mean pressure from the pressure at
infinity is important for properly defining the sound. The mean pressure of the
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controlled cases, p̄, is not constrained, and in principle can drift due to the control,
though any such drift would be penalized by increasing J. We observe, however,
that the difference in p̄ from p̄o on Ω is less than 3 % of the maximum uncontrolled
acoustic pressure fluctuations, so J(φ) in (3.1) effectively remains acoustic when
control is applied.

3.2. Sensitivity

To determine the sensitivity of the cost functional J to small modifications of the
control φ, we consider the perturbation J′ that results from an arbitrary perturbation
φ′ to the control φ. This perturbation J′ is defined as a differential of the cost
functional J with respect to φ(x, t) in the direction φ′:

J′ ≡ lim
ε→0

J(φ + εφ′) − J(φ)

ε
=

∫ t1

t0

∫
Ω

2[p(φ, x, t) − p̄o(x)]p′(x, φ, φ′) dx dt. (3.2)

The limit that defines p′ in the integrand is exactly analogous to that which defines
J′. In forming the rightmost term in (3.2) from (3.1), the derivative operation can
be viewed as commuting with the integration operation. With the differential of the
functional J defined in (3.2), the gradient g(φ) of the functional J for any direction
φ′ can be defined implicitly as (Vainberg 1964)

J′ =

∫ t1

t0

∫
C

g(φ)φ′ dx dt. (3.3)

The space integration in (3.3) is only over C, the support of φ′. Together (3.2) and
(3.3) provide an implicit formula for g,∫ t1

t0

∫
C

g(φ)φ′ dx dt =

∫ t1

t0

∫
Ω

2[p(φ, x, t) − p̄o(x)]p′(x, φ, φ′) dx dt, (3.4)

which in principle could be solved for the best φ′ if all p′ were known for all potential
φ′ perturbations, but to solve for the n space–time components of φ′, we would need
to solve the flow at least n times for n linearly independent perturbations. For large
n (107 in our case), this option is impractical. In the next section, we use an adjoint
formulation to solve for g directly, which can then be used to update the control by

φnew = φold − rg(φold), (3.5)

where r is a generalized distance in φ-coordinates determined iteratively to minimize
J(φnew) in the g-direction.

3.3. Adjoint-based optimization: formulation

Our formulation is similar to that of Bewley, Moin & Temam (2001) for incompressible
flow and we use similar notation. As in (3.2), a differential is applied to all flow
variables q, to define q ′ = [ ρ ′ u′ v′ p′ ]T . We take q ′ to be the still unknown
perturbation to a solution q of the flow equations (2.3) due to a control perturbation
φ′, though this specific designation is not assumed by the differential definition of q ′.
Mathematically, this means that

N(q + q ′) = F(q + q ′)(φ + φ′), (3.6)

where the notation for the term on the right-hand side indicates that the vector
F depends on q + q ′ and multiplies the scalar φ + φ′. Linearizing (3.6) in q ′, or
equivalently taking the differential of the governing equation (2.3), yields

N′(q)q ′ = F′φ + Fφ′. (3.7)
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The operation N′(q)q ′ is linear in q ′, though N′(q) is itself a nonlinear function of
q. It is convenient for the subsequent development to define

M′(q, φ)q ′ = N′(q)q ′ − F′φ = Fφ′, (3.8)

thus isolating the control perturbation on the right-hand side of the equation. The F′

corresponding to the specific controls we consider are listed in table 1.
With an inner product defined

〈c, d〉 ≡
∫ t1

t0

∫
�2

c · d dx dt ≡
∫ t1

t0

∫
�2

4∑
n=1

cn(x, t)dn(x, t) dx dt, (3.9)

the adjoint of M′(q) is obtained by integration by parts:

〈M′(q)q ′, q∗〉 = −〈q ′, M∗(q)q∗〉 + b, (3.10)

where b includes the space and time boundary terms (see equation (3.13) below) and

q∗ = [ ρ∗ u∗ v∗ p∗ ]T (3.11)

is introduced as the adjoint field. The adjoint operator M∗ includes two parts:

M∗(q)q∗ = N∗(q)q∗ + A∗(q∗)φ. (3.12)

The term A∗(q∗) arises from F′ in (3.8) and is non-zero only for certain cases,
as indicated in table 1. The term N∗(q)q∗ is derived from the flow equations (see
Appendix B) and is the same for all controls considered.

The boundary term b in (3.10) is

b =

∫∫ t1

t0

(Bx q ′) · q∗
∣∣∣x=+∞

x=−∞
dt dy +

∫∫ t1

t0

(By q ′) · q∗
∣∣∣y=+∞

y=−∞
dt dx +

∫
�2

(Bt q ′) · q∗
∣∣∣t1
t0

dx,

(3.13)

where the B factors are 4 × 4 matrices. This boundary term b can be eliminated
by choosing appropriate boundary and initial conditions for the adjoint problem.
Mathematically, causality ensures that the first two integrals are zero for the finite
time interval considered here. However, since the physical domain of the computation
was necessarily finite, an effectively equivalent radiation-like condition was enforced
at the numerical boundary. This condition was implemented in practice as in the flow
solution with a combination of characteristic boundary conditions and an absorbing
boundary zone. Causality also eliminates the time boundary term at the initial time
t = t0 in the third integral: there can be no perturbation to the flow (i.e. q ′ = 0) due
to the control before the control is applied. The condition at the end time t = t1 can
be eliminated by simply starting with q∗ = 0 at t = t1 and solving the adjoint system
backward in time.

We can now choose a source term F∗ for our adjoint system,

M∗(q)q∗ = F∗, (3.14)

so that the adjoint solution provides the gradient g in (3.5). We start by substituting
(3.8) and (3.14) into (3.10) with b = 0 as discussed to show that

〈Fφ′, q∗〉 = −〈q ′, F∗〉. (3.15)

Comparing (3.15) with (3.4), we would like to obtain

−〈q ′, F∗〉 =

∫ t1

t0

∫
Ω

2[p(φ, x, t) − p̄o(x)]p′(x, φ, φ′) dx dt, (3.16)
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so that

〈Fφ′, q∗〉 =

∫ t1

t0

∫
C

g(φ)φ′ dx dt. (3.17)

The adjoint source term F∗ that gives (3.16) from (3.9) is

F∗ =

[
0 0 0 − 2(p − p̄o)

∫
Ω

δ(x − xo) dxo

]T

, (3.18)

and by (3.17)

g(φ) = F · q∗, (3.19)

where, in practice, q∗ is known from the numerical solution of the adjoint system and
F is case dependent and defined in table 1. With g(φ), we now have the generalized
direction in which to change φ to reduce J for use in a gradient-based optimization
procedure.

3.4. Adjoint-based optimization: numerical implementation

The adjoint equations are solved on the same mesh and by the same methods used to
solve the flow equations. The δ-function in (3.18) is distributed to the computational
mesh by a Gaussian distribution function exp(−(y + 70δω)2/(4�y2)), where �y is the
local mesh spacing. Thus, our smeared out approximation to the δ-function has width
≈ 2.7δω, which is much less than the wavelength (� 14δω) of any significant radiated
sound waves. This was proved to be effective in noise cancellation tests (Wei 2004).

For the control update, the Polak–Ribiere variant of the conjugate gradient
algorithm is used with Brent’s line minimization (Press et al. 1986). Each line
minimization typically required approximately 10 flow solutions and 10 adjoint
solutions. One entire line-minimization procedure, which accomplishes the step along
one conjugate gradient, is designated as one iteration in the following, so the number of
field solutions can be estimated as ≈ 20× (# iterations), but this approximate number
is, of course, sensitive to the local shape of J(φ). All optimizations were started from
a φ = 0 condition, which may be responsible for the particular optimized conditions
found by the control because standard gradient descent searches can only find local
minima. Since the success of our control is sufficient to study noise mechanisms of
interest, we have not investigated this possibility.

As shown in § 3.3, the entire flow-field solution needs to be saved in order to
solve the adjoint equations. To save memory and minimize data input and output
operations, we saved the flow solutions only at every other point in space and time
and interpolated using third-order polynomials in space and linear interpolation in
time. No differences were noted between test cases computed used the full fields
and the interpolated fields. The optimizations presented in this paper each required
approximately 20 000 processor-hours of computation on an IBM SP3, usually using
80 processors and requiring about 30 gigabytes of memory.

3.5. Adjoint solution

The evolution of the adjoint pressure p∗ is visualized in figure 3. It is this quantity
that provides the gradient information g to update the internal-energy control and is
a factor in all the types of control studied (see table 1). Since the flow equations are
self-adjoint in the acoustic limit, the adjoint pressure starts as an adjoint sound wave,
excited along Ω by the pressure as specified in (3.18). When this wave encounters the
mixing layer, it excites disturbances that convect upstream in the shear layer in a way
similar (but time reversed) to the motion of the vortex structures of the flow field,
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Figure 3. Adjoint pressure p∗: (a) t = 435.1δω/�U , (b) t = 411.6δω/�U , (c) t = 294δω/�U ,
(d) t = 235.2δω/�U . The time decreases in the adjoint solution.

and with approximately the same speed as the structure convective Mach number,
Mc = 0.55. These disturbances eventually reach C, where the adjoint solution provides
the gradient g to update φ according to (3.19). These observations suggest that the
effect of the control follows the same track but in reverse from C to the target line
Ω . They also suggest that the control mechanism is via the instabilities and flow
structures in the mixing layer, and not so-called anti-sound acoustic cancellations, an
issue that is revisited in detail in § 4.2. Given this qualitative behaviour of the adjoint,
we can express the expected mechanism of noise control as follows: (i) the control
interacts with the flow, (ii) this interaction alters (slightly, as we shall see) the ins-
tabilities in the flow, and (iii) the modified flow is quieter. This interpretation will be
strengthened quantitatively in § 4.

3.6. Price term

It should be noted that the cost J in (3.1) does not penalize the control effort. A term
to do this was intentionally omitted since our primary objective is to study the effect
of the control on the flow and its noise mechanism, not to seek any mathematically
formal optimum. Such an objective would probably require a price term added to
(3.1) that penalizes the control effort:

H(φ) = J(φ) + cw

∫ t1

t0

∫
C

φ2 dx dt. (3.20)

The gradient to reduce H is then

g(φ) = F · q∗ + 2cwφ. (3.21)

Numerical results for this formulation are provided by Wei (2004). Though the control
effectiveness is, of course, reduced for large enough cw , all of the following conclusions
are unchanged by the price term. Pertinent observations on the price term’s effect
are noted in the following. In § 4.3, we will briefly discuss its effect on the spectrum
of the control and in § 4.4 we will mention that it is responsible for increasing the
streamwise integral length scale of the control.

4. Results
4.1. Sound reduction

Figure 4 shows the reduction of J by different types of control. To make this plot, we
defined the starting point t0 in the cost function (3.1) as the acoustic travel time from
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Figure 4. The reduction of the cost function by different controls: mass ( ); x-direction
body force ( ); y-direction body force ( ); internal energy ( ); and all-terms
control (©). The � show internal energy control for the same flow but with different random
number excitation in (2.5) and (2.6).

C to the nearest point on Ω . This approximation provides a lower bound on the time
at which the control will be effective on Ω . Before this time, J not reducible from C,
but even for a period after this adjusted t0, the sound on Ω is not fully controllable
for two reasons: (i) the control’s effect can only reach the closest point on Ω , and
(ii) the rate at which the control’s effect travels within the mixing layer is slower than
the sound speed. In the layer, it is expected to travel at approximately the structure
convective Mach number, Mc ≈ 0.55, as suggested by the adjoint solution behaviour
seen in § 3.5. With this definition, all controls reduced the noise on the target line
by more than 60 %, with the internal-energy control showing a 92 % (11 dB) sound
reduction. A case with the mixing layer excited by a different set of random numbers
α(i) is also shown in this figure to demonstrate insensitivity to the specifics of the
artificial random excitation.

We also tried to maximize controllability by combining all four types of control
simultaneously. In this case, the control space is 4 times larger than the original one,
so we generalize the control to be φi(x, t) for i = 1, 2, 3, 4 and use corresponding Fi

to represent each of the F vectors in table 1, so (2.3) becomes

N(q) =

4∑
i=1

Fiφi(x, t). (4.1)

The corresponding cost-function reduction is also shown in figure 4. It is decreased
more slowly for the selected optimization parameters than, say, the internal-energy
control only, but eventually it approaches about the same control effectiveness. (No
attempt was made here or throughout to attach any particular significance to the
rate of convergence.) Since the all-terms control offered no clear benefit, we do not
discuss it in the rest of this paper and study the four single-equation control types
separately.

The sound further from the mixing layer has, of course, been reduced as well, mostly
in, but not limited to, the sideline direction targeted by the selected Ω . Figure 5 shows
the initial and controlled directivity on a circular arc centred at x = 50δω and y = 0
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Figure 5. Sound directivity: without control ( ); and with mass ( ), x-direction
body force ( ), y-direction body force ( ), and internal energy ( ) controls.

with radius R = 300δω. The greatest reduction is in the acoustic shadow of Ω , between
α = 54◦ and 126◦. For smaller and larger α, the control’s effectiveness is diminished,
though the noise is still reduced. Intensity at angles α, β < 40◦ and > 140◦ were
not computed because they were determined by testing with known sources to be
inaccurate in the far field. Surprisingly, the noise is reduced at all angles, even in
the opposite direction to that targeted by our choice of Ω . This overall reduction
is inconsistent with any simple anti-sound noise cancellation mechanisms, which is
investigated in detail next.

4.2. Anti-sound?

Before proceeding to investigate the effects of the control on the flow, it is important
to establish quantitatively that the noise reduction is indeed by a change in the flow as
a source of sound and not an anti-sound acoustic cancellation with φ in C providing
the cancelling acoustic waves. It has already been suggested in § 3.5 that since adjoint
instability waves dominate the gradient information in C, the control mechanism
should be linked to the hydrodynamics.

To demonstrate further that our control is not by anti-sound and is, in fact, far
superior to what could be accomplished with anti-sound, we designed the numerical
experiment shown in figure 6(a). Here, C is moved away from the shear layer
such that it is now defined by x/δω ∈ [1, 7] and y/δω ∈ [−21, −15]. The adjoint
instability wave never reaches this control region, so control should be principally
by acoustic cancellation. Only the internal-energy source control, which can be an
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Figure 6. Anti-sound control test: (a) configuration schematic; (b) the reduction of J by
internal energy source control in the shear layer ( ) (from figure 4) and off the shear layer
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Figure 7. (a, b) Sound directivity: without control ( ) and with internal energy anti-sound
control ( ), with α and β defined in figure 5. (c) Sound intensity on the line x = 94δω:
without control ( ), with anti-sound control ( ), and with internal energy control in
the shear layer ( ).

efficient monopole-like sound source, is presented here for demonstration purposes.
After 12 iterations, a 40 % reduction is observed (figure 6b), which is not surprising
because anti-sound is known to be effective locally, though it is also known to increase
the sound elsewhere. Figures 7(a) and 7(b) show the sound directivity of this case.
The anti-sound control case is actually louder than the case without control in most
directions. Even for the area in the acoustic shadow of Ω , there is no far-field sound
reduction. Figure 7(c) suggests that the non-collocated flow and control noise sources
produce local cancellation on Ω but not beyond. Clearly, the flow control is more
effective than would seem possible for just anti-sound, though we cannot rule out the
possibility that an anti-sound mechanism might aid it. We saw in figure 5 that the
control is not as successful in the far field as on Ω , which suggests that the noise
reduction on Ω might indeed include some anti-sound component.

4.3. Spectra

There are four important spectra in our controlled flow. The first is of our
randomized excitation based on the estimated fundamental frequency f0, as described
in § 2.4. Unless otherwise noted, the particular random numbers used gave excitation
frequencies 0.36f0, 0.40f0, 0.69f0, 0.99f0, 1.28f0, 1.57f0, 1.86f0, and 1.90f0. The
second is the spectrum of the optimized control; the third is the near-field spectrum
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Figure 8. Flow and control spectra. (a) Near-field (y = 0) pressure spectra p̂p̂∗. , The
overlaid controlled cases and uncontrolled cases at x = 4δω , the centre of C. The no control
case is also shown at x = 25δω ( ), x = 50δω ( ), x = 75δω ( ), and x = 100δω

( ). (b) Pressure spectra p̂p̂∗ at x = 75δω , y = 0 without control ( ); and with mass
( ), x-direction body force ( ), y-direction body force ( ), and internal energy
( ) controls. The same cases are shown with the same line types in (c) for the far-field
sound pressure spectra p̂p̂∗ at x = 152.6δω , y = −281.9δω (α = −70◦ on the same arc as in
figure 5, which is near the angle of maximum intensity). (d) The spectrum of the optimized

y-direction body-force control φ̂φ̂∗ at x = 4δω , y = 0. Other controls show similar behaviour.
For reference, the filled circles mark the four lowest excitation frequencies. The vertical scale
is linear but arbitrary for each set of spectra. Curve sets (a–c) are nearly flat for f > f0.

of the mixing layer before and after control is applied; and the fourth is the spectrum
of radiated sound before and after control. Figure 8 shows all these spectra.

At the centre of C, just downstream of the random excitation, the dominant
frequency is near f0 (see the curves in figure 8a), apparently a direct response to
the randomly selected 0.99f0 excitation. The control is seen to have an imperceptible
effect upon the pressure spectra in C, showing its weak effect on the hydrodynamics.
Downstream, dominant frequencies are lower as expected, and more sensitive to the
control as seen in figure 8(b), though the modest changes observed do not suggest any
fundamental change to the flow. It is also noteworthy that the near-field spectrum at
x = 75δω is dominated by frequencies that are significantly lower than the excitation
frequencies, suggesting that nonlinear interactions are responsible for their character.

The optimized control (figure 8d) has energy over a wide range of frequencies, not
just near the sound frequencies it is designed to control. This observation suggests that
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Figure 9. Sound pressure spectra on the same arc as in figure 5 at (a) α = 50◦ and (b) α = 90◦:
without control ( ); and with mass ( ), x-direction body force ( ), y-direction
body force ( ), and internal energy ( ) control.

the control works through the nonlinear dynamics in the mixing layer, not by simply
exciting a linear instability that somehow cancels the physical noise, for example.
Adding a price term to the cost functional, as discussed in § 3.6, reduced the control’s
amplitude at all frequencies, suggesting that they are all important.

The far-field noise spectra are significantly changed by the control. Interestingly, all
controls seem to affect spectra in about the same way, reducing mainly a particularly
loud peak at f ≈ 0.159f0. This peak corresponds to neither a spectral peak in the
near-field pressure nor a clear spectral peak in the optimized control. The changes to
the complete far-field noise spectrum by different controls are more clearly represented
in figure 9. The effect of all controls is to reduce the noise of lower frequencies, which
contain most of the acoustic energy, with greater reduction noted closer to the
downstream axis. We also see, however, that more high-frequency noise is radiated by
the controlled cases. The internal-energy control caused the greatest increase in high
frequencies, though it also reduced the overall noise the most.

The apparent success of the controls at some sound frequencies but not others is
investigated further in figure 10, which shows directivities in narrow frequency bands
for all cases. We see again that the sound is most reduced near the frequency 0.159f0,
which is the loudest in the uncontrolled case. It is also seen in figure 10(b–d) that
the controls are extremely successful at certain angles so that relatively silent angles
are formed, suggesting some higher degree of cancellation in the sound source. A
similar angle of extinction has been predicted by Huerre & Crighton (1983) for the
sound produced by the amplification and decay of instability waves in the shear
layers of a jet, and was observed experimentally in Bridges & Hussain (1992)’s round
jet experiment and in simulations of regularly forced two-dimensional (Colonius
et al. 1997) and axisymmetric (Mitchell, Lele & Moin 1999) free shear flows. In
all these cases, the flows were excited with a single-frequency or several harmonics.
Our randomly excited flow shows no such angles of extinction, and it is well-known
that turbulent jets do not either. This is the first indication of several that we will
investigate in the remainder of the paper that the control has induced a subtle
ordering, which, at least as far as acoustics are concerned, shares characteristics with
idealized or regularly forced flows.

We can make a preliminary assessment of this suggested similarity by comparing the
control of the randomly excited mixing layer to that of the corresponding harmonically
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Figure 10. Frequency-dependent directivity for frequencies bands (a) 0.093 < f/f0 < 0.133,
(b) 0.139 < f/f0 < 0.179, (c) 0.275 < f/f0 < 0.315, and (d) 0.343 < f/f0 < 0.383: without
control ( ); and with mass ( ), x-direction body force ( ), y-direction body force
( ), and internal energy ( ) control. Angle α is defined in figure 5.
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Figure 11. The cost reduction by internal energy control in for the randomly (�) and
harmonically (�) excited mixing layers.

excited mixing layer discussed in § 2.4. In this case, the noise is not reduced significantly
by the control (figure 11). More remarkably, its level nearly matches the noise control
limit observed in the randomly excited case. Increasing the amplitude of the harmonic
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Figure 12. The optimized control φ at time 100δω/a∞: (a) mass control; (b) x-direction
body-force control; (c) y-direction body-force control; and (d) internal-energy control. Black
indicates φ > 0.001, and grey indicates φ < −0.001 in (a–c). These limits are ±0.01 in (d).

excitation increases the sound level somewhat but does not increase the effectiveness
of our control scheme. By the same reasoning that ordering reduces sound, taking
α(i) = 0 in (2.5) should also lead to a quieter flow. Indeed, the initial J in this case
falls halfway between the random α(i) case and the harmonically excited case. These
observations suggests that the harmonically excited flow is pathologically quiet and
that it might, in some sense, be near some lower bound on the noise from this type
of unsteady free shear flow, though this is beyond the capabilities of our formulation
to prove. Further discussion of these similarities is in § 4.6.3.

4.4. The optimized control

Figure 12 shows snapshots of the φ in C for various controls at the same time. The
apparent structures we see in φ can be shown with space–time correlations to advect
at the flow’s convection speed, though the integral length scale of the control is shorter
than the flow. It is also noteworthy that the internal-energy control has a somewhat
longer streamwise correlation length scale than the other controls (Wei 2004). If
a price term is added to the cost functional, as discussed in § 3.6, the streamwise
correlation of the control is seen to increase somewhat (Wei 2004), which suggests
that the more important components of the control are more downstream persistent.

The power needed by the controls is remarkably small. To show this, a relative
power function η(t) can be defined as a ratio of the control’s power to the turbulence
kinetic energy flux through a vertical line L at the downstream edge of C (x/δω = 7,
−80 < y/δω < 80). The instantaneous flux is

F̃ =

∫
L

Ek(x0, y, t)u(x0, y, t) dy, (4.2)

with

Ek = 1
2
ρ[(u − ū)2 + (v − v̄)2], (4.3)

so relative the power η for the different cases is defined as

ηρ(t) =
1

F̃

∫
C

φρ(x, y, t)T0/γ dx, (4.4)

ηu(t) =
1

F̃

∫
C

φu(x, y, t)u(x, y, t) dx, (4.5)

ηv(t) =
1

F̃

∫
C

φv(x, y, t)v(x, y, t) dx, (4.6)

ηe(t) =
1

F̃

∫
C

φe(x, y, t) dx, (4.7)
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|ηρ | |ηu| |ηv | |ηe|

Maximum 2.25 × 10−2 5.13 × 10−3 1.90 × 10−4 2.27 × 10−1

Average 1.94 × 10−3 4.39 × 10−4 1.87 × 10−5 2.75 × 10−2

Table 2. The maximum and average power needed by controls in terms of relative power
ratio function |η|.

where the subscripts on η and φ refer to mass source (ρ), x-direction body force (u),
y-direction body force (v), and internal energy source (e) controls. The maximum and
average values of |η| are listed in table 2 for each control. We see that the peak η

is 0.23, required by an optimized internal-energy control, with corresponding average
0.028. From the viewpoint of required power, the y-direction body-force control is
the most efficient, with an average |ηv| = 1.87 × 10−5 and peak |ηv| = 1.90 × 10−4.
Defining η based on the mean F̃ yields the same conclusions.

4.5. Control dimensionality

The 107 control parameters optimized are expected to be far more than is needed to
represent an effective control. We can estimate the necessary dimensionality of the
control by expanding it in empirical eigenfunctions. From a practical standpoint, the
fewer modes needed and the more simple their form, the more likely are effective
active controls to be implementable. To obtain appropriate empirical eigenfunctions,
we used the proper orthogonal decomposition (Berkooz, Holmes & Lumley 1993),
also called the Karhunen–Loève decomposition. Specifically, the method of snapshots
(Sirovich 1987) was employed to provide a decomposition of the form

φ(x, t) =

N∑
i=1

ai(t)ψi(x), (4.8)

where
∫

ψiψj dx = δij and sums of the form
∑M

i=1 ai(t)ψi(x) for M < N are optimal

in the sense of representing the
∫

φ2 dx energy. Figure 13 shows the eigenfunction
mode energies of the optimized controls. Typically, 50 % of the total control energy
is in the first 10 modes, and 75 % is in the first 20. Perfect pairing of the lower modes
is seen for the x-direction body-force control, which we shall see in § 4.6 also appears
to control the flow somewhat differently than the other controls.

Since these eigenfunctions merely provide a spectral representation of the data,
with no direct link to control effectiveness, we must verify that a small number of
these modes can indeed be successful. Controls φM reconstructed with only the M

lowest-order modes were thus applied to the original flow. As shown in figure 14, the
y-direction body-force control reconstructed with the first mode only, which captures

23 % of the overall
∫

φ2 dx energy, reduces the cost J by 38 % (2.1 dB). With the
second mode also included, the y-direction body-force control reduces the cost J
by about 44 % (2.5 dB). This cost reduction is better as more modes are included.
When 40 modes are included to rebuild the y-direction body-force control, the cost
is reduced by 64 % (4.4 dB), which is close to its full-mode limit 69 % (5.1 dB).
The noise reduction by internal-energy source control rebuilt with 40 modes is 82 %
(7.4 dB), which is also close to its full-mode limit 92 % (11 dB). Similar effectiveness
is observed for all other types of control.

Though a small number of modes can be effective, their form is non-trivial.
Figure 15 shows the first four empirical eigenfunction modes for the y-direction
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Figure 14. Sound reduction by controls rebuilt with the M lowest-order modes (lines with
symbols): mass source ( ), x-direction body-force ( ), y-direction body-force ( ),
and internal-energy ( ) controls. Horizontal lines show the full-mode limit. J0 is the
uncontrolled J.

body-force control. The spatial scale appears to be smaller as the mode number
increases. The corresponding time coefficients ai(t) are reported elsewhere (Wei 2004),
and have as expected higher frequency content for higher modes. The spatial form
of the control is also important. We attempted to control the noise with an ad hoc
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Figure 15. Spatial shape of the empirical eigenfunction basis for the control: (a) mode 1;
(b) mode 2; (c) mode 3; and (d) mode 4. The black shows values lower than −0.15, and the
grey shows values higher than 0.15.

pre-specified spatial shape,

φ(x, t) = φ̂(t) exp(σ0|x − x0|2), (4.9)

with x0 the centre of C and σ0 = 0.1. In this case, the optimized φ̂(t) for the x-
direction body-force control reduces the noise by 44 %, but the other types of control
achieved at most a 20 % reduction.

4.6. Control-induced changes to the flow

Having the original noisy flow and a perturbed version of it that is significantly
quieter provides an opportunity to study the changes that make the flow quiet. The
‘before’ and ‘after’ flows are compared in the following subsections.

4.6.1. Energetic structures

Several studies of single-frequency or harmonically excited free shear flows (Bridges
& Hussain 1992; Ffowcs Williams & Kempton 1978; Laufer & Yen 1983; Colonius
et al. 1997) suggest some connection between vortex pairing and sound radiation.
However, for our randomly excited flow, our control reduces the noise substantially
without suppressing pairing or substantially changing the vortex structure at all.
In figure 16, visualizations compare the flow before control (figure 16a) and after
control (figure 16b–e), showing little change in the vortical structure of the flow.
We heuristically arranged the visualizations of the controlled cases in order of
increasing difference from the uncontrolled case. The y-direction body-force control
causes almost no noticeable change: figure 16(b) is almost indistinguishable from the
uncontrolled case in figure 16(a). This is also the case that demanded the least control
energy. However, the internal-energy control case in figure 16(c), which required
the most control energy, also appears almost unchanged, but since the control in
this case does not directly affect the vorticity, its influence might be expected to be
less apparent in this visualization. The mass-control case shown in figure 16(d) is
noticeably different, but the same pairings seem to occur at approximately the same
locations. The x-direction body force in figure 16(e) is the only case that appears to
have any fundamental difference. These randomly excited flows can be contrasted to
the highly organized harmonically excited flow in figure 16(f ).

To avoid any bias caused by only showing four closely spaced snapshots and to
provide a more complete picture of the vortex evolution, in figure 17 we show the
entire history of large structures as designated by the pressure fluctuations at y = 0.
The convergence of low-pressure structures, the black branches in the figure, are an
indication of vortex mergings. Again we see slight changes where vorticies merge
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Figure 16. Instantaneous vorticity field visualizations at times ta∞/δω = 312.5, 331.0, 351.1,
and 371.3, with contour levels from −0.6�U/δω to 0.02�U/δω: (a) no control; (b) y-direction
body-force control; (c) internal-energy source control; (d) mass control; (e) x-direction
body-force control; and (f ) the harmonically excited case, which is indistinguishable before
and after control.

and so on, but the changes caused by even the x-direction body force in this more
complete picture do not indicate any fundamental change, with most (though not all)
of the low-pressure mergings occurring near to the locations at which they appear
in the uncontrolled case. All these observations bring us to the conclusion that there
is no fundamental relation between vortex pairing per se and the part of the noise
reduced by our controls in the present mixing layers.

4.6.2. Mean-flow and fluctuation statistics

Given the qualitative similarity of the flow before and after the control is applied,
one should not be surprised that the mean flow and turbulence statistics are also
nearly unchanged. Figure 18(a) shows that momentum thickness, defined by

δm =

∫ yb

ya

ρ(u − Ua)(Ub − u)

ρ∞�U 2
dy, (4.10)

is nearly linear in x and only slightly changed by any of the controls for all four
cases, though they all suppress spreading slightly around x = 60δω. In (4.10), Ua and
Ub are the x-velocity at ya and yb and results were, of course, insensitive to the ya

and yb.
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Figure 17. Pressure evolution at y = 0: (a) no control; (b) y-direction body-force control;
(c) internal energy source control; (d) mass control; (e) x-direction body-force control; and
the (f ) harmonically excited case. Black is (p − p∞) < 0; white is (p − p∞) > 0.
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Figure 18. (a) Momentum thickness (4.10) of the mean flow (normalized by δm0
, the initial

momentum thickness at x = 0). (b) Fluctuation kinetic energy integrated in the y-direction
(4.11). Lines in both figures show cases without control ( ); and with mass ( ) source
control, x-direction body force ( ), y-direction body force ( ), and internal-energy
source ( ) controls.
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Second-order statistics of the flow fluctuations are also nearly unchanged. With Ek

defined in (4.3), the y-integrated mean fluctuation kinetic energy normalized by the
local mean momentum thickness (4.10),

Et (x) =

∫ 80δω

−80δω

Ek dy

δm(x)
, (4.11)

is plotted in figure 18(b). This quantity reaches its maximum near x = 25δω and
remains constant downstream. The control was applied from x = δω to x = 7δω,
where the turbulence intensity is about 70 % of its fully developed level, though the
mixing layer is already spreading linearly at this point and at the same rate as for large
x. Thus, the control was optimized and applied in a region where the unsteady flow
fluctuations have amplitudes close to their nonlinearly saturated condition. Moving
C further downstream to where the fluctuations are somewhat more intense and
increasing its size in proportion to the local momentum thickness showed similar
success. The small effect of the control on the flow is clear in that the turbulence
kinetic energy has not been changed much by the controls. The noise control is not
by a suppression of the unsteady fluctuations.

4.6.3. Evolution of the energetic flow structures

Based on these results, it is clear that subtle aspects of the manner in which the
fluctuation energy is arranged in the flow must be responsible for the noise reduction
we observe. Assuming for discussion the simplest description of sound source and
propagation discussed in § 1, it is potentially subtle aspects of their evolution as they
advect downstream that puts energy into components with supersonic phase velocity
in x, which can then radiate to the far field in y. The specific interactions that disrupt
smooth advection in x are, however, difficult to quantify. Interactions with a short
length scale in x, or similarly on a short time scale, will broaden the corresponding
Fourier transforms in k and ω and thus potentially increase energy in components
that can radiate. However, analysis of direct numerical simulation data suggests that
all Fourier modes participate in the interaction (Freund, Bodony & Lele 2002).

Here we seek a means of assessing how smoothly the flow’s energy advects
downstream. For convecting structures in a quiet streamwise homogeneous flow, we
would expect to find that the flow’s fluctuations would be representable by Fourier
modes with only subsonic (or mostly subsonic) phase velocities. A way for them to be
quiet would be for them to advect nearly unchanged, which would give them a form
such as a1(t) cos kx + a2(t) sin kx, with a1(t) and a2(t) tracing circles in their phase
plane. In the present streamwise inhomogeneous case, Fourier transforms are clumsy
(e.g. Freund 2001). Though they do provide a definitive partitioning of the energy
into radiating and non-radiating components, their physical interpretation is clouded
by the fact that individual k–ω modes may extend beyond the length of the physical
flow. Therefore, we employ empirical eigenfunctions in the inhomogeneous-flow x-
direction to assess the advection of energy. The proper orthogonal decomposition
is again used here to provide empirical basis functions as it has been used in
numerical and experimental efforts in designating flow structures in jets (Arndt, Long
& Glauser 1997; Freund & Colonius 2002; Hileman et al. 2004). We define the
empirical eigenfunctions by a kinetic energy norm

‖q‖2 =

∫
Dp

(u2 + v2) dx, (4.12)
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Figure 19. The empirical eigenmodes of the harmonically excited mixing layer: (a) relative
mode energy as in figure 13; (b) the ρv component of modes 1 and 2 with solid lines showing
positive and dashed showing negative contours; and (c) the phase plane of the coefficients of
modes 1 and 2.
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Figure 20. Relative energy represented by the lowest-order empirical eigenfunctions before
(�) and after (�) control: (a) y-direction body-force and (b) x-direction body-force controls.

where Dp is the entire physical domain in our computation, and can then reconstruct
the flow by

q(x, t) =

N∑
i=1

ai(t)ψ i(x). (4.13)

Taking the harmonically excited mixing layer as an example, we see that the
kinetic energy of the two most energetic modes is nearly the same (figure 19a), the
corresponding modes fit together as sines and cosines (figure 19b), and their time
coefficients trace circular trajectories in their phase plane (figure 19c). This is the type
of behaviour that we anticipated for this quiet flow. Remarkably, we can observe a
switch to this type of underlying behaviour with the application of our control even
in the randomly excited flow.

We focus on the y-direction body-force control case for discussion, but the results
are general. Figure 20(a) shows the relative energy represented by each eigenfunction
before and after the y-direction body-force control is applied. While they are similar
before and after, it is noteworthy that mode energy levels become more closely paired
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Figure 21. The ρv component of the four most energetic empirical eigenfunction modes
before and after y-direction body-force control with solid contours showing positive levels
� 0.03 and dashed contours showing negative levels � −0.03.
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Figure 22. Phase map of the coefficients of the first two empirical eigenfunctions (a) before
and (b) after y-direction body-force control.

up to mode eight. The eigenfunctions also pair up. Figure 21 shows the y-momentum
components of the vector-valued eigenmodes. After control, they become close out-
of-phase pairs, like sines and cosines. Further, and perhaps more importantly, their
time-dependent coefficients now give their net behaviour a smoother downstream
travelling character. Figure 22 shows the coefficients a1(t) and a2(t) of the first two
modes before and after the control is applied. The x-momentum components of the
eigenmodes show similar behaviour.

The cases using mass control and internal-energy control show very similar
behaviour to that discussed above for the y-direction body-force control. However, for
the x-direction body-force control, the energy of each mode is paired up differently
(see figure 20b). It seems to couple the fifth and sixth eigenmodes of the flow. For the
y-direction momentum components of the modes (see figure 23a, b), a coupling into
sine- and cosine-like modes occurs for modes 5 and 6. Correspondingly, the phase
picture of the coefficients a5(t) and a6(t) also shows more circular motion compared
with the original flow (figure 23c, d). We saw in figure 10 that this control is more
successful at higher frequencies than the y-body-force control.
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Figure 23. (a, b) The ρv component of modes 5 and 6 before and after x-direction body-force
control with solid contours showing positive levels � 0.03 and dashed contours showing
negative levels � −0.03. Also shown are the phase maps of the coefficients of the these modes
(c) before and (d) after x-direction body-force control.

5. Discussion and conclusions
In summary, the adjoint-based optimal control framework that we formulated and

implemented was able to circumvent the complexity of the flow’s interactions leading
to noise generation and significantly reduce it directly. It ‘chose’ to do this by subtly
changing the evolution of the existing turbulence structures in the flow. Only slight
changes in the locations of pairing and other identifiable events were noted and the
turbulence statistics were nearly unchanged by the control. Since essentially the same
vortex pairings were observed before and after the application of the control, we
conclude that it is not pairings per se or any other clearly identifiable near-field flow
mechanics that are responsible for making a considerable fraction of the total noise.

The clearest picture of the changes to the flow came from decomposing it into
empirical eigenfunctions, which show that the controlled turbulence structures advect
more uniformly downstream. The eigenfunctions of the controlled flow are in sin–cos
like pairs, with coefficients that trace relatively circular trajectories in their respective
phase planes. This interpretation was reinforced by results for a harmonically (as
opposed to randomly) excited mixing layer. In this case the control was ineffective,
but the flow was already acoustically inefficient, radiating comparably to the controlled
randomly excited cases. The empirical eigenfunctions also shared key features with
the randomly excited but controlled flow. They were, as expected, in distinct sin–cos
pairs whose coefficients traced near perfect circles in their corresponding phase plane.

It has long been understood that the largest turbulent flow structures in inflectional
free shear flow bear considerable resemblance to the linear instability modes supported
by the same flow. This is especially true in two-dimensional flow, which lacks the vortex
stretching mechanism for removing energy from these structures via the turbulence
energy cascade. Such similarity has inspired several efforts to model aspects of
free-shear-flow noise using wave-packet models for the noise sources. These have
included attempts based on both actual linear instability modes (Huerre & Crighton
1983; Mankbadi & Liu 1984) and relatively ad hoc wave packets, which match the
qualitative character of growing then decaying instability modes (Crighton & Huerre
1990; Ffowcs Williams & Kempton 1978). Collectively, these have met with some
success, often predicting aspects (e.g. functional forms) of observed experimental
results, but typically are not complete, predicting for example erroneous angles of
silence (Huerre & Crighton 1983; Mankbadi & Liu 1984). A factor contributing to
this difficulty is the remarkable sensitivity of sources of this form to perturbations,
which presumably occur due to nonlinearity in any nonlinearly active free shear flow,



A noise-controlled free shear flow 149

making it louder. One can speculate that a free shear flow, at least a relatively simple
two-dimensional one, is in some sense near an acoustically less efficient unperturbed
wave-packet state. Based upon the results presented in § 4.6.3, such an acoustically
inefficient state has been found by our control. Supporting this view, the angles of
silence observed for narrow frequency bands (figure 10) are similar to those predicted
by some wave-packet-based models. Three-dimensional turbulent flows are also known
to have an underlying instability-wave-like character, but it remains to be seen if they
can be perturbed into a quieter state as easily as the present two-dimensional flow.

Though we have optimized the control, no conclusions can be made about whether
or not this control is truly optimal and does not just represent a local minimum.
It is possible that a quieter flow might be achieved by starting from a different φ

point. A laminar flow would be an obvious target state, but what specific control
could achieve this in a free shear flow is unclear when the slightest disturbance will
once again seed instability growth and eventual nonlinear development in the flow.
In contrast, the optimized control we found appears to be a stable local minimum.
Regardless, laminarization is probably not a possibility for the selected C because it
does not extend entirely across the thickness of the mixing layers.

From a practical perspective, an attractive feature of the identified control is that
it is a relatively minor perturbation to the flow that does not change the fundamental
hydrodynamics, though it remains unclear how one might find such a controller
in practice. Unfortunately, the control itself was also complex, defying any clear
interpretation. Based on space–time correlations, it was seen to advect in its region of
support at the same speed as the local flow structures. A decomposition into empirical
eigenfunctions showed that controls reconstructed with only one or two modes, which
capture only 20 % to 30 % of the energy, achieved 40 % to 50 % sound reduction.
Optimizing only the time coefficient of a Gaussian-pulse-shaped actuation reduced the
noise up to 44 %, but was only this successful for the x-direction body-force control.

The authors thank Professor Clancy Rowley for helpful discussions about
the adjoint formulation and empirical eigenfunction analysis. We also gratefully
acknowledge the financial support from AFOSR and the computer resources provided
by NPACI and NCSA.

Appendix A. Compressible viscous flow equations
The compressible viscous flow equations were written in an operator form as

N(q) = [ n1(q) n2(q) n3(q) n4(q) ]T = 0, (A 1)

with

n1(q) =
∂ρ

∂t
+

∂ρu

∂x
+

∂ρv

∂y
,

n2(q) =
∂ρu

∂t
+

∂ρuu

∂x
+

∂ρuv

∂y
+

∂p

∂x
− 1

Re

(
4

3

∂2u

∂x2
+

∂2u

∂y2
+

1

3

∂2v

∂x∂y

)
,

n3(q) =
∂ρv

∂t
+

∂ρuv

∂x
+

∂ρvv

∂y
+

∂p

∂y
− 1

Re

(
4

3

∂2v

∂y2
+

∂2v

∂x2
+

1

3

∂2u

∂x∂y

)
,

n4(q) =
∂e

∂t
+

∂

∂x
[u(e + p)] +

∂

∂y
[v(e + p)] − γ

RePr(γ − 1)

[
∂2

∂x2

(
p

ρ

)
+

∂2

∂y2

(
p

ρ

)]

− 1

Re

[
∂

∂x
(τxxu + τxyv) +

∂

∂y
(τyxu + τyyv)

]
,




(A 2)
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where stresses τij are for a Newtonian fluid with zero bulk viscosity, and the total
energy e for our normalization is

e =
p

γ − 1
+

1

2
ρ(u2 + v2), (A 3)

including both internal and kinetic energy. Here, all variables were non-
dimensionalized with ρ∞, a∞, δω, and cp , which gives a dimensionless gas constant
R = (γ − 1)/γ , where γ is the ratio of the specific heats, and Re = ρ∞a∞δω/µ.

Appendix B. Adjoint equations
Following the systematic procedure in § 3.3, the adjoint of the linearized perturbed

compressible viscous flow equations is

N∗(q)q∗ =

(
C∗ ∂

∂t
+ A∗ ∂

∂x
+ B∗ ∂

∂y
+ D∗

)
q∗, (B 1)

where

A∗ =




u u2 uv 1
2
u(u2 + v2)

ρ 2ρu ρv
γp

γ − 1
+ 1

2
ρ(3u2 + v2) +

5

3Re

∂v

∂y

0 0 ρu ρuv − 5

3Re

∂u

∂y
0 γ − 1 0 γ u




, (B 2)

B∗ =




v uv v2 1
2
v(u2 + v2)

0 ρv 0 ρuv − 5

3Re

∂v

∂x

ρ ρu 2ρv
γp

γ − 1
+ 1

2
ρ(u2 + 3v2) +

5

3Re

∂u

∂x
0 0 γ − 1 γ v




, (B 3)

C∗ =




1 u v 1
2
(u2 + v2)

0 ρ 0 ρu

0 0 ρ ρv

0 0 0 1


 , (B 4)

and

D∗ =
1

Re




0 0 0 − γ p

Pr (γ − 1) ρ2
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∂y2
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. (B 5)

These matrices all depend on the flow solutions, ρ, u, v, and p. In the
numerical solution, C∗ was inverted every Runge–Kutta sub-step. The adjoint has
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a similar characteristics structure as the flow equations, which permits a one-
dimensional characteristic boundary condition to be developed in a similar fashion
(Wei 2004).
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